
APPL/A: A Language for Managing Relations
Among Software Objects and Processes

Dennis Heimbigner
Stanley Sutton, Jr.
Leon J. Ostenveil

CU-CS-374-87 September 1987

Department of Computer Science
Campus Box 430
University of Colorado,
Boulder, Colorado, 80309

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 1987 2. REPORT TYPE

3. DATES COVERED
 00-00-1987 to 00-00-1987

4. TITLE AND SUBTITLE
APPL/A: A Language for Managing Relations Among Software Objects
and Processes

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Colorado,Department of Computer
Science,Boulder,CO,80309

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Software products and the processes that create them are characterized by use of a wide variety of
relationships among software objects. We describe a research project whose goal is to enable more effective
management of software relations in the context of a software process programming language. Our
approach is to describe a model based on objects, relations, and processes. Our model differs from most
other attempts to use relations by providing programmable semantics for relations and separating their
implementation from logical specification. Programmability may be used to implement a variety of storage
structures, constraints, and inferencing mechanisms. We introduce an extension of Ada, called APPU A, to
enable programmers to define and manage relations within programs. The extensions to Ada include a
relation library unit with separate specification and body, a tuple type, an iterator for relations and a new
select alternative called the upon statement. We are defining an automatic translation of APPUA into Ada,
and are applying the language to a prototype process programming system for requirements, design, and
testing.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

22

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstract

Software products and the processes that create them are characterized by use of a wide variety of
relationships among software objects. We describe a research project whose goal is to enable more
effective management of software relations in the context of a software process programming language.
Our approach is to describe a model based on objects, relations, and processes. Our model differs from
most other attempts to use relations by providing programmable semantics for relations and separating
their implementation from logical specification. Programmability may be used to implement a variety of
storage structures, constraints, and inferencing mechanisms. We introduce an extension of Ada, called
APPU A, to enable programmers to define and manage relations within programs. The extensions to Ada
include a relation library unit with separate specification and body, a tuple type, an iterator for relations,
and a new select alternative called the upon statement. We are defining an automatic translation of
APPUA into Ada, and are applying the language to a prototype process programming system for
requirements, design, and testing.

Keywords: Process programming, relations, software environments, object management, Ada .

•

Table of Contents
1. Introduction 1
2. Models for Software Objects and Processes 2

2.1. The Object Model 2
2.1.1. Objects and Types 2
2.1.2. Relations 2

2.2. The Process Model 4
2.3. Interrelation of the Object and Process Models 4

3. Development of a Process Programming Language Based on Relations 5
4. APPUA Syntax and Semantics 5

4.1. Relations 5
4.2. Declaration of Tuples and Attributes 6
4.3. Relation Entries 6
4.4. Dependency and Constraint Specifications 7
4.5. Iteration over Relations 7
4.6. Upon and Select Statements 8

5. Examples 9
5.1. Relation C_to_Obj 9
5.2. Relation C_DFA 10

6. Related Work 1 0
7. Project Status and Future Work 11
Acknowledgements 12
References 13

1 .. Introduction
Software products are generally understood to be very complex aggregates of typed objects such as

source text, executable code, testcases, requirements specification, documentation, and design element.
We believe that good progress is being made toward understanding the components of software
products. Far less attention has been devoted to understanding the interrelations among these
components. Most large software objects such as source code and designs are, at least implicitly,
organized into graphs of component parts. Source code modules are related to corresponding test case
modules by complicated derivation processes. Design specifications are related to requirements
specifications by complex consistency relations which may not be well understood. It is becoming
increasingly clear that much of the complexity of software products derives not simply from the diversity of
objects comprising them, but also from the intricate ways in which these objects must be related to each
other.

This slighting of relations is unfortunate because their effective management is important to the
development of high-quality software products and essential to the maintenance of these products.
Relations should guide both developers and maintainers to the precise locations in the particular objects
which need alteration and enhancement. Consequently, the explicit recognition of complex relations
among software objects is an important element in the specification of software development and
maintenance processes. This implies that relation management is especially useful as an adjunct to
software process programming ([Osterweil87]).

In this paper we describe a research project whose goal is to enable more effective management of
software relations in the context of a software process programming language. Our premise is that
existing languages do not enable software engineers to create and manage relations of sufficient power
to model actual software products. We believe that by raising the visibility of relations we can make
software more comprehensible, and therefore more maintainable and robust. Our approach is to describe
a conceptual formalism and to introduce a programming language to enable programmers to define and
manage relations within programs. This language is called APPUA 1]. APPUA differs from most other
attempts to use relations in software engineering by providing programmable semantics for relations and
separating their implementation from logical specification.

While we believe that a relational interface is appropriate for users who wish to access software objects
we also believe that the semantics and implementation of relations should be programmed by their
creators and that few restrictions should be placed on the complexity of these programs. This allows
relations to serve as abstract interfaces to existing data structures, to trigger the execution of software
tools, to implement choices about how and whether various relations are to be stored, and to determine
what kinds of evaluation strategies (lazy versus eager, cached versus uncached) should be pursued. For
example, the relation between two objects may be defined in terms of the execution of an entire
sequence of complex programs (eg. software tools), each of which can be implemented using the storage
structures best suited for it.

This approach is in contrast to the capabilities of a traditional relational database, in which the storage,
indexing, and accessing mechanisms for relations are limited to a few fixed, implementations. This is too

1"APPUA" stands for "Ada Process Programming Language with Aspen," where "Aspen" is an earlier formulation of the data
model [Heimbigner 86]

2

limiting for most software engineering applications such as the creation of a software environment, where
the choice of implementations must evolve over time to meet performance criteria or to incorporate
externally developed software tools.

The rest of this paper is organized as follows. We first describe our relational models for software
objects and software processes and show how these are interrelated. We then present an overview of
the language APPUA, followed by examples of the use of APPUA to represent selected software
relations. Finally we discuss related work and report the status of our work.

2. Models for Software Objects and Processes
We believe that both software products and the processes that create them are characterized by use of

a wide variety of relationships among software objects. One aspect of this belief is that relations should
be programmable to enable specification of the precise semantics required by particular products and
processes. Consequently, relations provide a logical structure in which object and process management
can be integrated.

2.1. The Object Model
The object model we use in this work is based on a view of the software product as a large collection of

objects of many types, for example, requirements, design, code, tests, analyses, and documentation.
However, these objects are logically and physically interconnected by a complex network of relations of
many kinds, including derivation, consistency, version, and configuration relations. Some of these
relations are imposed by product requirements, while others support the software processes by which the
product is developed, evaluated, and maintained.

2.1.1. Objects and Types
Notions of object and type have been well developed in programming languages. Because the world

to be modeled consists of software objects, approaches from object-oriented languages seem especially
appropriate. We have adopted the following principles.

Each software object is unique and distinguishable and is an instance of one (or more) object types. A
type comprises a set of object values and a set of operations that reference those values. The operations
define the structure of the state of objects belonging to the type, and through these operations the state of
an object can be examined and modified. The "typing" of obj~cts is "strong" in that an object can only be
manipulated in terms of the operations associated with the type(s) to which it belongs.

All types are organized into a comprehensive type system. This system comprises some number of
predefined types plus mechanisms for the definition of new types from existing types. A wide variety of
type definition mechanisms exist but we have restricted ourselves to using the type definition facilities of
Ada [Ada 83] for reasons described in section 3.

2.1.2. Relations
The concept of relations used in this model is is based on the mathematical definition of a relation as a

subset of the Cartesian product of one or more domains (i.e. object types). As such, it is more general
than the notion of relation as defined in most relational database systems [Codd 70]. Those systems
typically limit the attributes to non-structured types such as integers and strings. Our relations have no

3

such restriction; they may include complex objects and even other relations. Thus they are akin to
various kinds of object models [Goldberg 83, Hammer 81, King 84, Smith 81]. Additionally, our relations
differ from those of conventional relational systems in terms of operations, semantics, and approach to
implementation, which are described below.

Each occurrence of a domain in the cross product is known as an attribute of the relation; these
attributes are both ordered and named. The elements in a relation are known as n-tuples (tor a relation
over n attributes) or simply tuples. Tuples are unordered and unique within a relation. Each tuple
comprises an ordered list of values, one for each attribute: each value belongs to the type of the
corresponding attribute and is identified within the tuple by reference to that attribute.

The operations inherently associated with relations include create and destroy (for relations) and insert,
update, delete, and selectively retrieve (for tuples in relations). More powerful operations such as those
of the relational algebra can be programmed in terms of the basic operations. However, it is also possible
to restrict the basic operations associated with a relation to a proper subset of those listed above (and
thereby also restrict the additional operations that can be programmed from them). A restricted set of
operations can be used, for example, to define "views" on which the ability to retrieve or update data is
limited.

As stated above, many kinds of relation are important for object management in software engineering;
these include at least derivation, consistency, organizational, and temporal relations (and possibly
others). Constraints on data, which may also be expressed in relational terms, are also important. The
specific relations and constraints appropriate to an environment or project will depend on the
requirements of the software product and processes. To be effective an environment must allow the
specification of relations with a wide range of semantics. In our model, in addition to the signature2, one
can specify the following semantic properties:

• Computational dependencies among attributes: Attributes can be designated as
"computed", and a computation can be specified in terms of specific algorithms and inputs:
these algorithms can be represented by processes in an environment, and the inputs can
include values of other attributes in the relation. In this way it is possible to express specific
computational dependencies between attributes of a relation. In software engineering terms,
these specifications can be used to define derivation relations among objects; in
mathematical terms, these specifications represent a class of functional dependencies
among the values of attributes in a relation.

• Constraints on data: Computable constraints can be associated with relations; these can
be used to restrict the values of individual objects, tuples of objects, and whole relations. In
this way it is possible to stipulate existential, referential, and other integrity constraints and to
specify functional, multi-valued, and other dependencies in the mathematical sense.
Constraints can be represented by programs in an environment, thus the specification of
arbitrary programmable constraints is possible.

The model must also allow the specification of the semantics of sets of relations. A software product
will be defined in terms of multiple relations and software processes will make use of additional relations;
the effectiveness of the processes and the acceptability of the product will depend on the consistency of
these relations as a group. Consequently, inter-relational dependencies are important. An approach to
achieving consistency between relations is inter-relational inferencing in which operations on one relation

2The combination of relation name, attribute names, and domain types is the signature.

4

trigger operations on another. For example, triggered operations can retrieve data from one relation to
use in the computation of a value in another, and they can propagate the effects of changes in one
relation to other, dependent relations.

2.2. The Process Model
Our process model is based on the notion of Process Programming as described in [Osterweil 86,

Osterweil 87]. This model suggests that complex activities such as software development, software
maintenance and all of their subactivities (eg. requirements specification and testing) can be modelled on
computer processes and that such software processes should be described formally by means of
computer programming techniques. Process programs should be written to describe the way in which
that activities of software workers are to be coordinated with those of automated tools to produce lower
level software objects and to integrate them into software products.

Analogous to a computer program, a software process program consists of code and data. A software
process is the execution of a software process program by an interpreter. The interpreter may be either a
computer or a person, depending on the nature of the process. Software tools function as operators in
the code and software objects serve as the operands for these operators. Software processes execute in
the context of a software environment, which contains the supporting interpreters, tools, and objects.

2.3. Interrelation of the Object and Process Models
Neither the object model nor the process model alone is sufficient for a software environment. The

object model emphasizes the importance of relations with programmable semantics and implementation.
Strictly speaking, it says nothing about how the semantics and implementation are to be programmed and
it says nothing about how the relations are to be used. Similarly, the process model emphasizes that
software processes should be formally specified in a programming language, but it says nothing about the
algorithms for those processes or the data structures on which they operate.

To resolve this dilemma, we propose that software processes should define the semantics for relations
and relations should define the mechanism through which processes access data. In this way, relations
and processes complement each other and provide an integrated model for software process
programming. Thus the notion of relation provides the logical structure which serves to unify the object
and process models.

Relations incorporate software processes through programmable semantic specifications.
Computational dependencies and constraints are defined in terms of software processes, and software
processes are triggered to effect interrelational inferencing. Additionally, software processes define the
implementation of relations in the environment.

Conversely, a collection of software processes characterizes a software product and supports its
development, and the processes do this principally by elaborating and maintaining relations over software
objects. Consequently, it is appropriate to express software processes directly in terms of operations on
relations. Moreover, since the schema and semantics of defined relations will depend in part on the
requirements of software processes, software processes can be simplified by the use of appropriate
relations.

5

The above considerations suggest that programmable relations provide a coherent framework for the
management of objects and processes in a software process programming environment. A key obstacle
to writing process programs at present is the lack of a language which is capable of supporting the
precise encoding of process programs. We believe that any such language must support relations with a
wide range of semantics and implementations. We view the inability of most languages to deal effectively
with such relations as a very serious deficiency. The work described in the next section is an attempt to
remedy this deficiency.

3. Development of a Process Programming Language Based on Relations
In order to experiment with and evaluate the process and object models described above we are

designing a programming language that includes a "relation" construct based on those ideas. The basic
goals of the language are

• support the relation-based object and process models described above;

• separate the specification of a relation from its implementation in a storage system;

• facilitate the programming of software processes.

Our approach to the design of a process programming language to meet the above goals has been to
extend an existing language. This has enabled us to concentrate on the features of special interest. We
selected Ada as our starting point. Ada has several advantages, including support for abstraction of
processes and data, multi-process programming through tasking, deterministic and non-deterministic
control constructs, and multiple types of program unit. Additionally, several of the features of Ada provide
useful models for the relational constructs to be added.

The main points of our approach to extending Ada are as follows:
• Relations are added as a new kind of library unit and tuples are added as a new type

constructor.

• New statements are added to iterate over relations and support interrelational inferencing.
• The syntax and semantics of Ada constructs were used as models for those of the new

features wherever appropriate.
As a result, the new relational features resemble Ada constructs, and programs that make use of these
features resemble Ada programs.

4. APPU A Syntax and Semantics
This chapter discusses the syntax and semantics of selected features of APPU A as extensions to Ada.

A formal syntax for APPU A has been prepared, but it is omitted here for brevity; the syntax is illustrated in
examples in section 5.

4.1. Relations
APPUA incorporates relations as an new kind of library unit. Unlike other library units, but like tasks,

relation units may represent instances or types. Relations can also be declared in basic declarations.
Relations have specifications and bodies comparable to those of packages and tasks.

A relation specification includes (in order)

6

• A mandatory tuple type definition.

• Optional relation entry declarations, which represent operations on the relation.
• Optional computational dependency specifications, which may be used to indicate the ways in which attribute values are computed.

• Constraint specifications, which indicate conditions that must be satisfied by attribute values within tuples and by tuples within the relation. Constraints should be specified where
appropriate.

Each of these elements is discussed in a following section.

The relation body is syntactically similar to a package or task body; because operations on relations
are effected through entry calls, relation bodies tend to resemble task bodies in practice. In general the
body of a relation will contain accept statements for the entries of the relation, which in tum will reference
an underlying storage system. The choice of a storage system and the implementation of the operations
is not constrained by the language. On the contrary, the programming of the body of a relation affords
the opportunity to implement alternative strategies for the storage and computation of attributes and for
inferencing between relations (as shown in the examples).

4.2. Declaration of Tuples and Attributes
Tuple declarations are analogous to record declarations. The principal difference between tuple and

record types is that tuple attributes have modes whereas record components do not. The attribute modes
are just those for subprogram and entry parameters: in, out, and in out; the default attribute mode is in.
The purpose of the modes is to indicate the ways in which attributes can receive values. Attributes of
mode in must be given values by the user through calls to relation entries. Attributes of mode out may
not be given by the user but must be computed within the body of a relation. Attributes of mode in out
can take on given and computed values in sequence. The modes of attributes also constrain the
parameter modes of relation entries.

Operations on tuples and attributes are restricted to help ensure that the attribute values of any tuple
object are consistent with the state of the relation from which it was retrieved. Attribute values within a
tuple can only be assigned in the body of a relation, although they can be referenced anywhere. Tuple
values as a whole can be tested for equality and assigned.

4.3. Relation Entries
The syntax of relation entry declarations is a subset of that for task entry declarations. Relation entries

fall into two groups: declarable and non-declarable (or implicit). The declarable relation entries are
restricted to "insert", "delete", and "update"; a relation specification may include declarations for any
subset of these. They are used to effect the corresponding operations on the relation, and they are
directly callable from user programs. The implicit entries are "find" and "selected"; these are not declared
but are assumed to be available for any relation. They are used during retrieval from relations. They are
not directly callable by user programs; instead they are invoked indirectly during the iterative retrieval
process (as described in section 4.5).

The formal parameters of relation entries must conform to rules that ensure consistency with the
corresponding tuple type definition and that provide a comparable interface from relation to relation. For
example, the "insert" entry may take one in or in out parameter for each attribute of that mode in the

7

definition of the tuple type for the relation (and no others), and the delete entry must take a single in
parameter of the tuple type for the relation. Similar rules apply to the other entries, both declarable and
implicit.

Relation entries provide a standardized interface to a relational abstract data type. This interface is
independent of the underlying storage structures, which may be relational or non-relational.
Consequently, the storage structures can be changed without affecting programs that make use of
relations, so long as the relation specifications remain unchanged.

APPUA requires no extensions to the syntax or semantics of Ada accept statements, except that they
can be used to accept calls to entries for both tasks and relations. The accept statement for relation
entries will implement the operations on the relation in terms of programmed strategies for the storage
and computation of attributes and inferencing between relations. For example, the values of out
attributes can be computed upon insert (an "eager" strategy) or upon retrieval (a "lazy" strategy); once
computed these values may be stored for future reference, and they may be propagated to other
relations.

4.4. Dependency and Constraint Specifications
Dependency and constraint specifications provide a means to stipulate the semantics of relations. The

purpose of a dependency specification is to indicate the way in which attribute values are computed; an
especially important case of this is computational dependencies among attributes of a single relation.
Computations are specified by reference to named subprograms or entries. For example, for a relation R,
with attributes A1 and A2, and procedure P, which computes a value of type A2 from one of type A1, a
dependency specification may stipulate that "A determines A2 by P(A1, A2)" (see the examples).
Reference to a specific computation may be omitted (for example, "A1 determines A2"). A relation may
have multiple dependency specifications; alternatively, the dependency specification may be omitted
entirely even when the values of some attributes are computed. The values of the computed attributes of
a relation must be determined in accordance with any relevant dependency specifications.

The purpose of constraint specifications is to stipulate predicates that must be true of the relation as a
whole or of tuples or attribute vai!JeS within it. The predicates include Ada boolean expressions
supplemented by special forms of relational predicate. These are based on constructs suggested by
Abbott [Abbott 86], and include conditional and quantified expressions (the details of which are omitted
here). The constraints for a relation must be characteristic of all tuples, individually or in combination, that
are retrievable from that relation.

4.5. Iteration over Relations
Retrieval of the tuples of a relation is provided through an iterative construct in the form of a loop

statement:

fort in R where P loop
S;

end loop;

where R is a relation, t is a variable of the tuple type of R, P is an optional selective predicate (a list of
values to be matched by tuples selected from R), and S is a (possibly compound) statement. S is
executed once for each tuple in the relation with values that match P. The order in which tuples are

8

retrieved is not defined by the language.

Retrieval is effected through calls on the implicit "find" and "selected" entries for the relation. The
semantics of iterative retrieval is defined in terms of a "while" loop and these entries. A statement of the
above form is equivalent to

R.find(first, P, t, found);
while found loop

R.selected(t);
S;
R.find(next, P, t, found);

end loop;

where "R.find{first, P, t, found)" is a shorthand notation (for purposes of discussion) that means "search
for the first tuple in R that satisfies P; if one exists then return it in t and set 'found' to true, otherwise set
'found' to false", and where "R.find(next, P, t, found)" has an analogous meaning. The purpose of the
"find" entry is to retrieve stored data for the tuple and allow the computation of any attribute values that
remain to be determined. The purpose of the "selected" entry is to signal that the given tuple has been
selected and thereby trigger actions that are dependent on the selection.

4.6. Upon and Select Statements
The upon statement is used to specify the conditional triggering of a sequence of statements by

operations on relations. Its purpose is to enable a relation to respond dynamically to events in the
environment. For example, an upon statement can be used to trigger the transfer of data between
relations. Thus, it can be used to effect interrelational inferencing.

The general form of an upon statement is

upon invocation_ condition invoke
S;

end upon;

where the invocation_ condition identifies an operation on a relation.

The upon statement is implemented logically as follows. An event queue is associated with each
process that may execute an upon statement. The event queue will contain records of events that are
referenced in invocation conditions in upon statements in the process. When an event occurs a record
for it is placed in the event queue of each process that has referenced it. These records are queued in
the order in which the events occur. The records are then available to trigger the the corresponding upon
statements in the processes, thus enabling the processes to respond asynchronously to the events.

Upon statements are somewhat analogous to Ada accept statements. When a process executes an
upon statement it is suspended until the "invocation condition" in the statement is satisfied (if ever); at
that time the record for the corresponding event is removed from the event queue for the process, and the
sequence of statements in the body of the upon statement is executed. This is not a "rendezvous" in the
Ada sense, however: There is no necessary synchronization of processes across an upon statement.
The process that establishes the invocation condition is not suspended until the upon statement is
completed; moreover, all processes waiting on an invocation condition are triggered by the realization of
that condition. (In effect a notice of the event is "broadcast".) The upon statement is like the Ada accept
statement in one other respect, however. No upon statement is triggered if it is not ready to execute, just

9

as no accept statement can receive an entry call if the accept is not ready to execute.

Upon statements can appear in any sequence of statements; they are not restricted to relation bodies.
In particular upon statements may be used in select statements.

The APPUA select statement is identical to the Ada select statement with the addition of the
"upon_alternative" to the "selective_wait_alternative". This enables the selective-wait statement to be
used to express the response of a relation to both entry calls and invocation events.

5. Examples
This chapter presents examples of two associated APPU A relations. The specifications of the relations

are shown in detail, including tuple type definitions, computed attributes, and computational
dependencies. The high-level structures of the bodies are outlined; the implementations of the relations,
as programmed in the bodies, differ with respect to computation and storage strategies and use of
interrelational inferencing.

5.1. Relation C_to_Obj
Relation C_to_Obj (see figures 1 and 3) relates C source code to the object code that is compiled from

it. The relation references two other library units, a procedure "invoke_cc", which compiles the source
code, and a relation "ObLto_Exe", which relates object code to the executable code linked from it. (The
relation ObLto_Exe is not included here because of space limitations; it has a specification and
implementation that are directly analogous to those of C_to_Obj.)

C_to_Obj has a tuple type with four attributes: two "in" attributes, the C code and a "debug" flag for the
complier, and two "out" attributes, the object code and a diagnostic report. The debug attribute has a
default value of "false". The object code and diagnostic report are computed automatically from the C
code and debug flag using the procedure "invoke_cc", which invokes the C compiler (this computation is
programmed in the body of the relation). The relation includes entry declarations for insert, update, and
delete operations; it has no constraints.

The sequence of statements in the body consists of a single, non-terminating loop statement over a
single select statement. The select statement includes five alternatives, one accept statement for each
of the three declared entries and one for each of the implicit entires "find" and "selected".

The low-level code within the select alternatives is omitted for the sake of simplicity since it depends on
the storage system used and since many of the details are uninteresting. The intended behavior of each
alternative is described by comments that indicate the computation, storage, and inferencing strategies to
be used. For example, the object code and diagnostics are computed in the "insert" entry as soon as the
C code and debug parameter are available, thus effecting an "eager' evaluation strategy, and the
computed values are stored immediately for future retrieval.

10

5.2. Relation C_DFA
Relation C_DFA (see figures 2 and 4) relates C code to a dataflow analysis that is derived from it by

means of a dataflow analysis tool. The relation references a subprogram that invokes the analysis tool
and the relation C_to_Obj.

The relation has a tuple type with one "in" attribute for the C code and one "out" attribute for the
analysis. The analysis is computed automatically from the C code using the procedure "invoke_c_dfa".
For the sake of simplicity the relation has only insert and delete entries; no update operation as such is
possible. The relation has no constraints.

The gross structure of the body of C_DFA resembles that for C_to_Obj: a non-terminating loop over a
select statement. The select statement has seven alternatives, one accept statement each for the
entries "insert", "delete", "find", and "selected", and one upon statement each for invocations of
"C_to_Obj.insert", "C_to_Obj.update", and "C_to_Obj.delete." As in the body for C_to_Obj, the details of
the select alternatives have been omitted but the intended effect of each alternative has been described
by comments. For example, C code values are stored upon insertion without the corresponding dataflow
analysis, and the dataflow analysis is computed upon retrieval instead of insertion, thus effecting a kind of
"lazy" evaluation.

Upon statements are used to respond to operations on the C_to_Obj relation, in particular to ensure
that C code that is represented in C_to_Obj is also represented in C_DFA. In this way data are
propagated between relations by a kind of "backward" inferencing.

6. Related Work
APPUA is being developed as part of an ongoing program of software environments research at the

University of Colorado. The earliest effort, TOOLPACK [Osterweil 83], focused on collections of tools.
Within TOOLPACK the Odin system [Ciemm 86) explored the idea of an object base as the integrating
element of an environment. Odin also supported a system of inferencing over derivation relations. In
conjunction with the Arcadia project [Taylor 86], APPUA is being developed to extend the ideas of Odin to
support general, programmable relations over objects in an environment.

APPUA is not the first system to propose some form of relation as a structuring concept. In [Ceri 83,
Linton 84, Powell 83] relations are proposed for the storage of complex software structures such as
source code, parse trees, and execution states. These systems rely on traditional relational databases
(such as INGRES [Stonebraker 76)); as a consequence their performance is prohibitively slow.

POSTGRES [Stonebraker 86), is an ambitious attempt to extend the relational data model to support
software environments. Specifically, POSTGRES extends INGRES with domains over abstract data
objects and procedures and supports both forward and backward inferencing. Consequently,
POSTGRES offers many of the capabilities of APPUA, and since POSTGRES is based on INGRES, it is
a more mature system. The major flaw in POSTGRES is its relative inflexibility. While individual domain
values may be programmable, the implementation of a whole relation cannot be specified. In addition,
the relations themselves are not considered objects, and so meta-relations over existing relations cannot
be constructed.

Increasingly research environments are using various kinds of object-oriented models to overcome the

11

limitations of relational databases [Goldberg 83, Hammer 81, King 84, Smith 81]. APPUA can be
considered such a system since it explicitly uses objects as the domains for its relations.

The Encore system [Zdonik 85] is one example of an object-oriented approach. Encore provides an
object-oriented database language for a database in which the objects are described by types with
operations, properties, and type inheritance, much like Smalltalk [Goldberg 83]. Encore has no built-in
notion of relation; rather it must be built up from more primitive concepts. Also, programmability is
associated with types rather than with relations.

Other systems that can be considered in this category are DAMOKLES [Dittrich 86], CAIS [CAIS 85],
NuMIL [Narayan 85]. These offer some interesting features but lack the combination of high-level
relations, strong typing, and programmability that is important in APPUA.

PS-ALGOL [Atkinson 83] represents a third modelling approach. It uses a persistent heap for object
storage and uses the language typing system for persistent objects. This allows it to closely control some
aspects of the storage of data, but this model is less flexible than the relational model for queries.

Horwitz [Horwitz 86] has proposed an approach to relations that is very similar to APPUA. She
proposes a relational interface to existing data structures, specifically software data, and shows that a
properly defined interface allows for certain classes of query optimization over such interfaces. The basic
operations of APPUA relations are comparable to those she recommends, but with modifications to
handle iterators and the upon operator.

APS [Cohen 87] is closest to APPUA in spirit. It too has programmable relations as its primary
modelling concept. These relations can support constraints and inferencing and AP5 has a very powerful
query language. AP5 is embedded in Lisp as opposed to Ada.

Finally, APPUA has some points in common with Adaplex [Smith 81]. Adaplex attempts to embed an
object oriented database into Ada by extending the Ada language. Adaplex uses types with attributes as
opposed to the n-ary relations favored by APPU A. Adaplex also does not allow close control over
implementation of its modelling structures.

7. Project Status and Future Work
The definition of the syntax and semantics of APPUA is complete. We have found that it supports the

major features of our models. As we gain experience with the language we expect that the syntax and
semantics will be refined and extended.

We have begun to define automatic translators of APPU A constructs into Ada. A relation is translated
into an Ada package. The tuple type definition is translated into a record type definition within the
package specification, and the relation entries are translated into a task specification within the package
specification. The relation body is translated into the task body within the package body. The "for" loop
to iterate over relations is translated into a "while" loop as described above. The upon statment is
translated into various conditional constructs, depending on the context. The signalling required for upon
statements is implemented by supplementing an APPUA system with additional tasks for this purpose.
An "Event_Queue" task is associated with each relation to represent the logical event queue in terms of
which the upon statement is defined. Each system is also supplemented with a single "Event_Monitor"

12

task. Each relation body is instrumented to signal the system Event_Monitor each time an entry is called;
the event monitor then signals the Event_Queue of each task with an upon statement that references
·that event.

Using these translations we have been able to program a simple APPLJA system comprising a main
procedure, two relations, and two tasks which we have translated into a single Ada program and executed
successfully. The main procedure provides a simple interface to the relations that enables a user to
insert, delete, and retrieve data; among other things this procedure makes use of the iterative construct.
A "Squares" relation associates integers with their squares. The integers are constrained to be non
negative. The squares are computed from given integers upon insertion and the integer-square pairs are
then stored; thus this relation uses an eager evaluation strategy with caching of computed data. Insertion
of an integer into this relation triggers insertion of the same integer into the other relation, a "Cubes"
relation, thus effecting a kind of forward inferencing. The Cubes relation associates integers with their
cubes. The cubes are computed upon retrieval but are not stored; thus this relation uses a lazy
evaluation strategy without caching of computed data. The tasks include upon statements that enable
them to respond to operations on the relations. The implementation of this system was simplified in some
respects because it was a single program. We are generalizing this approach to multi-program systems.

We are also using APPUA in a prototype software process program for a "requirements builder", a
program that coordinates the efforts of workers in developing a requirements specification. The
requirements specification is regarded as a DAG of requirements elements some of whose values are
entered manually and some of whose values are computed. Values of both types may be constrained.
APPUA relations are used to model, support, and enforce the DAG's lattice structure as well as relations
among the values of the elements. This prototype is being generalized to encompass other phases of the
development process, including design, testing, and maintenance; all phases will be supported by
APPUA relations. Finally, the phases will be combined into a programmable system for the specification
of software processes; relations will be an important integrating mechanism for this system. Additionally,
relations will be used to support dynamic typing for the system.

We also expect to make use of APPU A to experiment with alternative storage systems and with
strategies for computation, storage, and inferencing. In early work we have simply used Ada direct 1/0
files for storage. We are incorporating CACTIS [Hudson 87], a semantic database, as the storage system
in ongoing work. As the process programming prototype is developed and used it will afford the
opportunity to experiment with different approaches to the computing and caching of data and different
schemes for interrelational inferencing. In this way we will learn more not only about object management
for software processes but also about the processes themselves and the interrelation of object and
process management.

Acknowledgements
The authors gratefully acknowledge the support of the National Science Foundation cooperative

agreement #DCR-8420944, National Science Foundation grant #DCR-8745444 in cooperation with the
Defense Advanced Research Project Agency, Department of Energy grant #15537612, and the American
Telephone and Telegraph Company. In addition, the authors wish to thank Deborah Baker, Roger King,
Shehab Gamalel-din, and Mark Maybee for their advice and encouragement. The comments of the
members of the Arcadia consortium were also important in clarifying the issues surrounding APPUA.

13

References

[Abbott 86] R. J. Abbott, An Integrated Approach to Software Development, John Wiley & Sons,
New York, 1986.

[Ada 83] Ada Joint Program Office, U.S. Department of Defense,Reference Manual for the
Ada Programming Language,ANSI!MIL-STD-1815A-1983, U.S. Government, 1983.

[Atkinson 83] M. P. Atkinson, et ai,"An Approach to Persistent Programming," The Computer
Journal26(4) :360-365.

[CAIS 85] Military Standard Common APSE Interface Set (GAlS), Proposed MIL-STD-CAIS,
January 31, 1985.

[Ceri 83] "Relational Data Bases in the Design of Program Construction Systems," SIGPLAN
Notices 18(11):34-44 (November 1983).

[Ciemm 86] G. Clemm, The Odin System: An Object Manager for Extensible Software
Environments, University of Colorado Ph. D. Thesis, also Computer Science
Technical Report CU-CS-314-86, February 1986.

[Codd 70] E. F. Codd, "A Relational Model for Large Shared Data Banks," Communications of
the ACM 13(6):377-387.

[Cohen 87] D. Cohen, AP5 Manual, March 27, 1987.
[Dittrich 86] K. R. Dittrich, W. Gotthard, and P. C. Lockemann, "DAMOKLES - A Database

System for Software Engineering Environments," Proceedings of the International
Workshop on Advanced Programming Environments, IFIP WG2.4, Trondheim
Norway, June 1986, pp. 353-371 .

[Goldberg 83] A. Goldberg and D. Robson, Smalltalk-80: The Language and its Implementation,
Addison Wesley, 1983.

[Hammer 81] M. Hammer and D. Mcleod, "Database Description with SDM: A semantic database
model," ACM Transactions on Database Systems 6(3):351-386 (September 1981).

[Heimbigner 86] D. Heimbigner, D. Baker, and S. M. Sutton, Jr., "Providing Programmable Relations
over Software Objects in Aspen," University of Colorado Technical Report CU
CS-350-86, University of Colorado, Boulder, 1986.

[Horwitz 86] S. Horwitz, "Adding Relational Databases to Existing Software Systems: Implicit
Relations and a New Relational Query Evaluation Method," University of Wisconsin,
Madison, Computer Sciences Technical Report 67 4, November, 1986.

[Hudson 87] S. Hudson and R. King, "Object-Oriented Database Support for Software
Environments," ACM SIGMOD International Conference on Management of Data,
1987, pp. 491-503.

[King 84] R. King, "Sembase: A Semantic DBMS," Proceedings of the 1st International
Workshop on Expert Database Systems, Kiawah Island, South Carolina, October
24-27,1984, pp.151-171.

[Linton 84] M.A. Linton, "Implementing Relational Views of Programs," Proceedings of the ACM
SIGSOFT!SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, Pittsburgh, PA, May 1984, pp. 132-140.

[Narayan 85] K. Narayanaswamy, W. Scacchi, and D. Mcleod, "Information Management Support for
Evolving Software Systems," University of Southern California Computer Science
Technical Report 85-324, March 15, 1985.

[Osterweil83]

[Osterweil 86]

L. J. Osterweil, "Toolpack -- An Experimental Software Development Environment
Research Project," IEEE Transactions on Software Engineering SE-13(9):673-685
(November 1983).

L. J. Osterweil, "Software Process Interpretation and Software Environments,"
University of Colorado, Boulder, Department of Computer Science Technical Report

14

CU-CS-324-86, May 1986.

[Osterweil 87] L. J. Osterweil, "Software Processes are Software Too," Proceedings 9th
International Conference on Software Engineering, Monterey CA, March 31-April 2,
1987, pp. 2-13.

[Powell 83] M. L. Powell and M. A. Linton, "Database Support for Programming Environments",
Proceedings of the ACM SIGMOD International Conference on Databases tor
Engineering Design, San Jose, CA, May 1983, pp. 63-70.

[Smith 81] J. M. Smith, S. Fox, and T. Landers, Reference Manual for Adaplex, Computer
Corporation of America, Cambridge, Massachusetts, January 1981.

[Stonebraker 76] M. R. Stonebraker, E. Wong, P. Kreps, and G. D. Held, "The Design and
Implementation of INGRES," ACM Transactions on Database Systems 1 (3)
(September 1986).

[Stonebraker 86] M. Stonebraker, and L.A. Rowe, "The Design of Postgres", Proceedings of the ACM
SIGMOD International Conference on Management of Data, Washington, D.C., May
28-30, 1986, pp. 340-355.

[Taylor 86] R. N. Taylor, L. A. Clarke, L. J. Osterweil, J. C. Wiled en, and M. Young, "Arcadia: A
Software Development Environment Research Project", Second International
Conference on Ada Applications and Environments, April 1986, pp. 137-149.

[Zdonik 85] S. B. Zdonik, and P. Wegner, "A Database Approach to Languages, Libraries and
Environments," Proceedings of the Workshop on Software Engineering Environments
tor Programming-in-the-Large, Harwichport, Massachusetts, June 1985, pp. 89-112.

with invoke_cc;
with ObLto_Exe;

relation C_to_Obj is

type c_to_obLtuple is tuple
c: in c_code;
debug: in boolean :=false;
obj: out object_code;
diagnostics: out diagnostic_text;

end tuple;

15

entry insert(c: in c_code; debug in boolean :=false);
entry update(t: in c_to_obLtuple; c: in c_code := t.c;

debug in boolean :=false);
entry delete{t: in c_to_obLtuple);

dependencies

c, debug determine obj, diagnostics
by invoke_cc(c, debug, obj, diagnostics);

end C_to_Obj;

Figure 1: Specification for Relation C_to_Obj

with invoke_c_dfa;
with C_to_Obj;

relation C_DFA is

type c_dfa_tuple is tuple
c: in c_code;
dfa: out c_dfa_text;

end tuple;

entry insert(c: in c_code);
entry delete(t: in c_dfa_tuple);

dependencies

c determines dfa
by invoke_c_dfa(c, dfa);

end C_DFA;

Figure 2: Specification for Relation C_DFA

16

relation body C_to_Obj is

t: c_to_obLtuple;

begin

loop
select

accept insert(c: in c_code; debug in boolean:= false) do
--Initialize a new tuple with the given values of c and debug,
-- invoke the compiler to compute values for obj and diagnostics,
-- and store the result. If compilation is successful then
--insert obj and debug into Obj_to_Exe.
end insert;

or

or

accept update(t: in c_to_obLtuple; c: in c_code := t.c;
debug in boolean:= false)

do
-- Update the given tuple with the given values of c and debug,
--then proceed as above for insert.
end update;

accept delete(t: in c_to_obLtuple) do
-- Delete the given tuple from storage; find the corresponding
--tuple in Obj_to_Exe and delete it as well.
end delete;

or

or

accept find(first: in boolean :=false;
c: in c_code := NULL; match_c := false;
debug: in boolean:= false; match_debug :=false;
obj: in object_code := NULL; match_obj :=false;
diagnostics: in diagnostic_text :=NULL;

match_ diagnostics :=false;
t: out c_to_obLtuple) do

-- Simply retrieve the first (or next) tuple that matches
--the given values, if any, and return it.

accept selected(t: in c_to_obLtuple);
--Null

end select;
end loop;

end C_to_Obj;

Figure 3: Body for Relation C_to_Obj

17

relation body C_DFA is
begin

loop
select

or

or

or

or

or

or

accept insert(c: in c_code) do
--Initialize a new tuple with the given value of c; do
-- not compute the corresponding value of dfa at this time
-- but store the tuple in an "incomplete" form.
end insert;

accept delete(t: in c_dfa_tuple) do
--Delete the given tuple from storage.
end delete;

accept find(first: in boolean := false;
c: in c_code := NULL; match_c: in boolean := false;
dfa: in c_dfa_text := NULL;

match_dfa: in boolean :=false;
t: out c_dfa_tuple) do

--Retrieve the first (or next) tuple that matches (or may match)
-- the given values. If the value of dfa has not been computed
--for the retrieved tuple then compute it at this time. If the
-- the tuple does match the given values then return it.
end find;

accept selected(t: in c_dfa_tuple)
--If the dfa value has just been computed then store the tuple
-- with this new value.
end selected;

upon C_to_Obj.insert(c, debug) invoke
-- Initialize a C_DFA tuple with the value of c just inserted
--into C_to_Obj and store the tuple as for insert.
end upon;

upon C_to_Obj.update(c_to_obLt, c, debug) invoke
--If the value of cis updated for a tuple in C_to_Obj
--then delete the corresponding tuple in C_DFA and
-- create a new one with the updated value of c.
end upon;

upon C_to_Obj.delete(c_to_obLt)
--Delete the corresponding tuple from C_DFA.
end upon;

end select;
end loop;

end C_DFA;

Figure 4: Body for Relation C_DFA

